actor <- c("kim", "lee", "hyun")
gender <- c("M", "F", "M")
boxoffice2012 <- c(100, 110, 120)
boxoffice2014 <- c(100, 80, 160)
actordf <- data.frame(actor, gender,boxoffice2012, boxoffice2014)
actordft <- t(actordf)
actordft
str(actordft )
require(reshape)
# gender 가없었을때 돌아가던 것
actordf_m1 <- melt(actordf, id=c("actor"))
actordf_m1
# gender 가 추가된 후 ...
actordf_m2 <- melt(actordf, id=c("gender", "actor"))
actordf_m2
actordf_m2$variable <- substr(actordf_m2$variable, 10, 13)
names(actordf_m2)[3] <- "boyear"
names(actordf_m2)[4] <- "boxoffice"
cast(actordf_m2, boyear ~ actor, mean, value = 'boxoffice')
cast(actordf_m2, actor ~ boyear, mean, value = 'boxoffice')
cast(actordf_m2, actor ~ boyear, sum, value = 'boxoffice')
cast(actordf_m2, actor ~ boyear, sum, value = 'boxoffice')
cast(actordf_m2, gender ~ boyear, mean, value = 'boxoffice')
'R 데이터 분석' 카테고리의 다른 글
[R and SQL] [0630 ...................] (0) | 2015.06.30 |
---|---|
추가 0629 (0) | 2015.06.29 |
경기도 버스 : 경기도교통정보센터 (0) | 2015.06.29 |
GT apple samsung applications (0) | 2015.06.29 |
애플과 삼성 구글트렌드 값 비교 (0) | 2015.06.29 |