부동산실거래가 분석용 샘플
#------------------
# 지도위에 색칠 참고
#-------------------------
library(RgoogleMaps)
# http://data-sci.tistory.com/6
dlat <- c(37.2733038, 37, 37.45)
dlong <- c(127.0722408, 127.02, 127.06)
dlab <- c("home", "office", "buyer")
map_info <- data.frame(dlat, dlong, dlab)
names(map_info) <- c( "latitude", "longitude", "label")
map.center <- c(37.4, 127)
zoom.level <-11
mymap <- GetMap(center = map.center, zoom = zoom.level, maptype = "terrain", format = "png32")
PlotOnStaticMap(mymap, lat = map_info$latitude, lon = map_info$longitude, destfile = "mymap.point.png", cex = 1.5, pch =19, col="red")
# or alternatively ... poin labels
TextOnStaticMap(mymap, lat = map_info$latitude, lon = map_info$longitude, labels=map_info$label, cex=0.8, col = 'blue')
#--------------
dlat <- c(37.27, 37.273, 37.274)
dlong <- c(127.087, 127.06, 127.08)
dlab <- c("home", "office", "buyer")
map_info <- data.frame(dlat, dlong, dlab)
names(map_info) <- c( "latitude", "longitude", "label")
map.center <- c(37.27, 127.078)
zoom.level <-15
mymap <- GetMap(center = map.center, zoom = zoom.level, maptype = "terrain", format = "png32")
PlotOnStaticMap(mymap, lat = map_info$latitude, lon = map_info$longitude, destfile = "mymap.point.png", cex = 1.5, pch =19, col="red")
# TextOnStaticMap(mymap, lat = map_info$latitude+0.01, lon = map_info$longitude, labels=map_info$label, cex=0.8, col = 'blue')
#-----------
dlat <- c(37.2667, 37.2663, 37.2662 )
dlong <- c(127.082, 127.0823, 127.0827 )
dlab <- c("home", "office", "bench")
map_info <- data.frame(dlat, dlong, dlab)
names(map_info) <- c( "latitude", "longitude", "label")
map.center <- c(37.265, 127.0823)
zoom.level <-17
mymap <- GetMap(center = map.center, zoom = zoom.level, maptype = "roadmap", format = "png32")
# mymap <- GetMap(center = map.center, zoom = zoom.level, maptype = "terrain", format = "png32")
# 점마다의 중요도와 의미에 따라 색상과 크기 조절 가능 (df에 미리 저장해 사용 )
PlotOnStaticMap(mymap, lat = map_info$latitude, lon = map_info$longitude, destfile = "mymap.point.png", cex = 2, pch =10, col="red")
#====================
library(sp) # sp 라이브러리 로드
# http://www.gadm.org/download 에서 country와 level(0, 1, 2 중) 선택해서 다운로드 필요
print(load("KOR_adm1.RData")) # 데이터 로딩
[1] "gadm"
# 테스트용으로 지역의 랜덤값 추출
# language <- rep(seq(1,4),4)
# gadm$language <- as.factor(language)
names(gadm)
gadm$NAME_1
[1] "Busan" "Chungcheongbuk-do" "Chungcheongnam-do"
[4] "Daegu" "Daejeon" "Gangwon-do"
[7] "Gwangju" "Gyeonggi-do" "Gyeongsangbuk-do"
[10] "Gyeongsangnam-do" "Incheon" "Jeju"
[13] "Jeollabuk-do" "Jeollanam-do" "Seoul"
[16] "Ulsan"
yongfrq <- c(3, 1, 1, 1, 2, 2, 1, 5, 1, 1, 2, 3, 1, 1, 5, 1)
gadm$yongfrq <- as.factor(yongfrq)
# 컬러 선택
col = rainbow(length(levels(gadm$yongfrq)))
spplot(gadm, "yongfrq", col.regions=col, main="Provinces Yong Visits")
#====================
# 경기도 색칠하기 예제
#===========================
require(sp)
print(load("KOR_adm2.RData"))
# gadm is a large scale polygonal data frame with 229
elements
# south Korea 전체 데이터 셋에서 경기도만으로 범위 한정
gadm_gg <- subset(gadm, NAME_1=='Gyeonggi-do' )
ranindex_value <- c(2,2,2,2,2, 2,2,2,2,2, 2,2,2,2,2, 2,2,2,2,2, 6,1,4,8,3, 2,2,2,2,2, 2)
gadm_gg$ranindexvar <- as.factor(ranindex_value)
# 컬러 선택 -- 레인보우 또는 블루퍼플
require(RColorBrewer)
col <- brewer.pal(8, "Reds")
spplot(gadm_gg, "ranindexvar", col.regions=col, main="Where I am in GG" )
# spplot(gadm_gg, "ranindexvar")
#========================
# 돈까쓰 ... 색칠하기
#--------------------------------------
#------------------------
# 예지관 :: , 127.036120
# 돈까쓰 :: 37.300944, 127.036311
# 커피 :: 37.300546, 127.037066
dlat <- c(37.300906, 37.300944, 37.300546 )
dlong <- c(127.036120, 127.036311, 127.037066 )
dlab <- c("교육장", "식당", "휴식처편의점")
dcol <- c("red", "blue", "grey")
dsize <- c(2,1,0.5 )
map_info <- data.frame(dlat, dlong, dlab, dcol, dsize)
names(map_info) <- c( "latitude", "longitude", "label",
"color", "pointsize")
#---------------
map.center <- c(37.300485,127.035833)
zoom.level <-17
mymap <- GetMap(center = map.center, zoom = zoom.level,
maptype = "roadmap", format = "png32")
# 점마다의 중요도와 의미에 따라 색상과 크기 조절 가능 (df
에 미리 저장해 사용 )
PlotOnStaticMap(mymap, lat = map_info$latitude, lon =
map_info$longitude, destfile = "mymap.point.png", cex =
map_info$pointsize, pch =19, col=map_info$color)
TextOnStaticMap(mymap, lat = map_info$latitude, lon =
map_info$longitude, labels=paste(map_info
$label,as.character(map_info$pointsize)), cex=0.8, col =
'blue')
'R 데이터 분석' 카테고리의 다른 글
0714 복습 :: 연관성분석과 군집화 (0) | 2015.07.20 |
---|---|
0713 백업 (0) | 2015.07.13 |
[retail example ] R :: Tree, R, Scoring, cumulative gains chart plotting , AIC oversampling, (0) | 2015.07.11 |
CVS example (0) | 2015.07.09 |
movie prediction exmple (0) | 2015.07.08 |