>RE::VISION CRM

Python데이터분석

sample notebooks

YONG_X 2018. 10. 31. 16:22

[ MAPE 구하는 함수 ]


https://gist.github.com/amanahuja/6315882


[ 아나콘다에서 윈도우즈 텐서플로 설치 ]


https://tensorflow.blog/%EC%9C%88%EB%8F%84%EC%9A%B0%EC%A6%88%EC%97%90-%EC%95%84%EB%82%98%EC%BD%98%EB%8B%A4-%ED%85%90%EC%84%9C%ED%94%8C%EB%A1%9C%EC%9A%B0-%EC%84%A4%EC%B9%98%ED%95%98%EA%B8%B0/




[ multivariate time series forecasting using lstm :: references ]


Multivariate Time Series Forecasting with LSTMs in Keras


https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/?fbclid=IwAR0DG94DGhOUpCVmFlQFAVX_sTgunfqpZscieeRKH0dz41rcmSdmDgM0Qn8



Multivariate Time Series Forecasting with LSTMs in Keras


https://hk.saowen.com/a/620ee85e064d178fecd830840c37f5d98aca7094723de125d49d5ed085b57243?fbclid=IwAR0LNsnBie8zBOr9ic-WrqflOIyhh4ED0XWbnVg-F7J40CONrk8MyxZYNx8



Time-Series Modeling with Neural Networks at Uber


https://forecasters.org/wp-content/uploads/gravity_forms/7-c6dd08fee7f0065037affb5b74fec20a/2017/07/Laptev_Nikolay_ISF2017.pdf?fbclid=IwAR0fNC7nPtPa9q9Fw6QURi2SW2GBXAqRbScFvVNo0AQ5o_gNW3YeVR40xPM




LSTMs for Human Activity Recognition


https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition?fbclid=IwAR0LNsnBie8zBOr9ic-WrqflOIyhh4ED0XWbnVg-F7J40CONrk8MyxZYNx8 




Correlated Time Series Forecasting using Deep Neural Networks: A Summary of Results 

(AE vs Convolutional RNN) 


https://arxiv.org/pdf/1808.09794.pdf



[ Forecasting Multivariate Time Series Data Using Neural Networks ]

Forecasting Multivariate Time Series Data Using... (PDF) : 구글에서 위 제목으로 검색



:: XGBoost, CatBoost

전용준_리비젼_xgbcatb_201810.pdf






# SVM feature importance plotting

https://medium.com/@aneesha/visualising-top-features-in-linear-svm-with-scikit-learn-and-matplotlib-3454ab18a14d


#========================



import numpy as np

import matplotlib.pyplot as plt

import pandas as pd



# Read data

d0 = pd.read_csv("C:/Users/KDATA/Desktop/Y00/cat_.csv", encoding = "euc_kr")

# d0 = pd.read_csv("C:\Users\KDATA\Desktop\Y00\cat_.csv")

print(d0.head())


# d19 = d1['Q53A4_2'][:20]
# print(d19)

# replace string value of null to np.Nan

d1['Q53A4_2'].replace('#NULL!', np.NaN, inplace=True) 
d19 = d1['Q53A4_2'][d1['Q53A4_2'].notnull()]

print(d19[:10])

# d19 = d19[~np.isnan(d19)]
print(d19[:10])
d191 = list(map(int, np.array(d19)))
plt.hist(d19, bins=20)
plt.show()



autoencoder_01.ipynb


DavisEDA.ipynb


EDA_scatterplot_practice.ipynb


embedding_01.ipynb


movies_vec.ipynb


RF_bank.ipynb


tfldl01.ipynb


tfldl01_cont_tgt.ipynb


tfldl01_cont_tgt_ML18.ipynb




[ AutoEncoder Sample and Beijing Data Set ]



AE_03.ipynb



Beijing2017_HourlyPM25.csv




[ DT 의미 파악 예제 - Boston data ]



Boston 디시전트리 예제.ipynb



[ correlation heatmap 예제 ]


https://www.linkedin.com/pulse/generating-correlation-heatmaps-seaborn-python-andrew-holt  


[ 출력된 챠트 해상도 높이기 : 참고 ] 


https://stackoverflow.com/questions/12192661/matplotlib-increase-resolution-to-see-details 


import pylab as pl
pl.figure(figsize=(7, 7))  # Don't create a humongous figure
pl.annotate(..., fontsize=1, ...)   # probably need the annotate line *before* savefig
pl.savefig('test.pdf', format='pdf')   # no need for DPI setting, assuming the fonts and figures are all vector based


[ 스캐터플롯에 대각선 추가용 참고]


# regression part

from scipy import stats


slope, intercept, r_value, p_value, std_err = stats.linregress(x,y1)

line = slope*x+intercept

plt.plot(x, line, '--')


막대그래프 그리기 


plt.bar(np.arange(3),[1,2,3])

plt.xticks(np.arange(3), names)



[item-CF example]


Item_CF.ipynb



[ ARIMA 예제 ]

https://machinelearningmastery.com/arima-for-time-series-forecasting-with-python/  


https://medium.com/@josemarcialportilla/using-python-and-auto-arima-to-forecast-seasonal-time-series-90877adff03c

전용준_리비젼_xgbcatb_201810.pdf
0.44MB
movies_vec.ipynb
0.67MB
EDA_scatterplot_practice.ipynb
0.15MB
RF_bank.ipynb
1.16MB
embedding_01.ipynb
0.02MB
tfldl01_cont_tgt_ML18.ipynb
0.63MB
AE_03.ipynb
0.08MB
DavisEDA.ipynb
0.08MB
tfldl01_cont_tgt.ipynb
0.86MB
autoencoder_01.ipynb
0.17MB
Beijing2017_HourlyPM25.csv
0.19MB
Item_CF.ipynb
0.11MB
Boston 디시전트리 예제.ipynb
0.1MB
AE_03.ipynb
0.04MB
tfldl01.ipynb
1.89MB